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described in terms of three Fe(CO)3 groups and a 
dimethylarsenic group being linked together to form a 
nearly planar square arrangement. The ligand is 
above this square plane and is coordinated differently 
to each of the three iron atoms: to Fe(I) by As(5), 
to Fe(2) by a T bond from the cyclobutene ring, and to 
Fe(3) by a a bond from the cyclobutene ring. This 
nicely meets the valence requirements of each of the 
groups involved, each iron atom having a (different) 
distorted octahedral environment. The bonding may 
be regarded either in terms of a delocalized system 
involving all the iron and arsenic atoms together with 
the cyclobutene carbon atoms or, equally well, in con­
ventional valence-bond terms involving d2sp3 orbitals 
on each iron atom. The molecule as a whole has no 
over-all symmetry either on a molecular or crystal-
lographic basis. 

It should be noted that the iron-iron bonds are 
markedly different in length; the long iron-iron bond 
involves the iron atom linked to the two arsenic atoms 
(cf. ref T), while the shorter ("normal") one involves 
coordination to a single arsenic atom. These may be 
compared to the more nearly equal iron-iron distances 
of 2.69, 2.68, and 2.55 A found in the parent molecule 
Fe3(CO)12.
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This structure together with the [Ni(diars)(triars)]-
(ClOj)2 compound should indicate the need for caution 
in the inference of structures for ditertiary arsines even 
where rearrangement of the ligand may not be expected. 
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Photochemical Formation of a Cyclopropanone1 

Sir: 

Kropp and Erman have reported the photoisomer-
ization of 5a,8aa-dimethyl-1,5,6,7,8,8a-hexahydro-1/3,-
4a-cyclo-2(4aH)-naphthalenone (1) to 4,8-dimethyl-5,6,-
7,8-tetrahydro-2-naphthol (2) at room temperature in 
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45% aqueous acetic acid.2 Analogy with related 

(1) Photochemical Transformations. XXXI. 

systems suggests that a spirodienone intermediate 
may be involved3 in this process. We wish to report 
the nature of the low-temperature (—190°) photo­
chemistry of 1. 

Irradiation of neat 1 as a glass at —190° in a liquid 
nitrogen cooled infrared cell using previously described 
techniques4-6 produces a photoproduct with intense 
absorption at 1812 cm~l and weaker absorption at 1840 
cm -1 , together with a small amount of a ketene deriva­
tive with absorption at 2106 cm - 1 (Figure 1). It is 
clear from the simultaneous appearance and disap­
pearance that the 1840- and 1812-cm-1 absorptions 
belong to the same species. Irradiation of 1 with 
light of X 2537 A or >3600 A is best for maximum 
accumulation of the product with the 1812-cm-' ab­
sorption. Light in the 3000-3600-A range rapidly 
converts the photoproduct to carbon monoxide and a 
hydrocarbon in high yield (65% isolated; >90% by 
spectroscopic determination). The nmr and infrared 
spectra, molecular weight, and element analysis of the 
hydrocarbon are consistent with structure 3.7 Ozon-
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olysis of the hydrocarbon followed by decarboxylation 
(and/or decarbonylation) gives a mixture of cis- and 
?ran.s-2,6-dimethylcyclohexanones. The formation of 
3 represents a novel diversion of the photochemistry of 
1 by use of low-temperature techniques. This two-
quantum process is a useful synthesis of 3. 

The product with the 1812-cm"-1 band disappears on 
warming above — 115°. No carbon monoxide is evolved 
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851, 796 (RCH=CR 'R"), 728 cirr" (cis RCH=CHR') ; X S 0 H 256 
nm U 3850); nmr (CClO, three olefinic protons (5 5.7-6.2), allylic 
methine proton (m, 5 3.0), six methylene protons (m, 5 2.2-0.8), and two 
methyl groups (s, 5 1.15; d, 6 1.18). 
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in the thermal reaction. The photochemical (but not 
thermal) loss of carbon monoxide and the infrared 
absorption of the product suggested that the low-tem­
perature photoproduct might be a cyclopropanone.8 

In accordance with this suggestion, warming the photo-
product in the presence of furan gave an adduct (4, 
mp 131-132°). Structure 4 for the adduct follows 
from the element analysis, molecular weight, and 
spectroscopic data, including spin-spin decoupling.9 

The structure of the adduct 4 defines the structure of the 
cyclopropanone as 5. Formation of 5 from 1 can be 
viewed formally as a 2ir + 2<r cycloaddition or a [1,3]-
sigmatropic rearrangement.10 Such a rearrangement is 
symmetry allowed if it occurs in a suprafacial sense.10 

Either process would lead to stereochemical structure 6 
for the cyclopropanone. It is possible, however, that 
formation of the cyclopropanone involves photo­
chemical electrocyclic opening of the common bond 
in the bicyclo[3.1.0]hexenone system, demotion, and 
thermal electrocyclic closure (8 -*• 5) to the cyclopro­
panone. In this process either of the two stereoisomeric 
cyclopropanones (6 or 7) might be formed. Alterna-
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tively, cleavage of the bicyclo[3.1.0]hexenone system 
in a manner analogous to that observed in umbellulone 
and lumisantonin5 could lead to a ketene carbene 
which could in turn serve as a precursor of the cyclo­
propanone. 

Concerted, or nearly concerted, loss of carbon mon­
oxide from 5 must occur by a cr-symmetric process.11,12 

This is reasonable for a photochemical but not for a 
thermal process. 

The relationship between the low-temperature photo-
product (5) and the room-temperature photochemistry 
observed by Kropp2 has not been defined. It is clear 
from the nature of the furan adduct, however, that the 
principal thermal reaction of the cyclopropanone 
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Figure 1. Infrared spectrum of a sample of 1 after 15-min irradia­
tion as a neat film at - 1 9 0 ° . The bands at 1812 and 1840 c n r 1 are 
due to S. The 2130-cirr1 band is carbon monoxide, and the 
2106-cm - ' band is due to a ketene derivative. 

5 is the symmetry-allowed heterolysis of the carbon-
carbon bond opposite the carbonyl group. The re­
sultant zwitterion (8 or its protonated form)13 would be 
an ideal precursor for the spirodienone en route to 
Kropp's phenolic product. Thermal closure of 8 to 1 
is symmetry forbidden. Zwitterions analogous to 8 

5 8 

have been invoked to account for photochemical for­
mation of phenolic products from bicyclo[3.1.0]hex-
3-en-2-ones.3'14,15 

The small amount of ketene formed in the low-
temperature irradiation of 1 has not been identified. 
It is probably a diene ketene similar to those formed 
from umbellulone and lumisantonin.6 
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